DOT/FAA/TC-18/11

Federal Aviation Administration William J. Hughes Technical Center Aviation Research Division Atlantic City International Airport New Jersey 08405 Report of Engine Icing Working Group Subcommittee on Engine Ground Operations in Supercooled Large Drop Conditions

March 2018

Final Report

This document is available to the U.S. public through the National Technical Information Services (NTIS), Springfield, Virginia 22161.

This document is also available from the Federal Aviation Administration William J. Hughes Technical Center at actlibrary.tc.faa.gov.

U.S. Department of Transportation Federal Aviation Administration

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof. The U.S. Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the objective of this report. The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the funding agency. This document does not constitute FAA policy. Consult the FAA sponsoring organization listed on the Technical Documentation page as to its use.

This report is available at the Federal Aviation Administration William J. Hughes Technical Center's Full-Text Technical Reports page: actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF).

Technical Report Documentation Page

				Documentation raye	
1. Report No.	2. Government Accession No		3. Recipient's Catalog No.		
DOT/FAA/TC-18/11					
4. Title and Subtitle	5. Report Date				
Report of Engine Icing Working Group St	ubcommittee on Engine	e Ground Operations	March 2018		
in Supercooled Large Drop Conditions			6. Performing Organization C	ode	
7. Author(s)			8. Performing Organization Report No.		
Subcommittee Chair: Daniel Knezevici					
9. Performing Organization Name and Address			10. Work Unit No. (TRAIS)		
GE Aviation					
1 Newman Way					
Cincinnati, Ohio, 45215					
			11. Contract or Grant No.		
12. Sponsoring Agency Name and Address			13. Type of Report and Perio	d Covered	
U.S. Department of Transportation			Final Report		
Federal Aviation Administration			. r		
William J. Hughes Technical Center					
Aviation Research Division					
Structures and Propulsion Branch	405				
Atlantic City International Airport, NJ 08	405		44.0		
			ANE-100	;	
15. Supplementary Notes					
The FAA William I Hughes Technical Co	enter Aviation Research	h Division COR was I	ames T Rilev		
16. Abstract					
La manufactura de la EAA lattar as avastiras in		manual initiate and a data di Turla	. 2 2012 the Engine I	(ain a Washin a Cassa	
formed a Subcommittee on Engine Grou	und Operations in Su	round icing, dated July	Conditions This ren	ort encompasses the	
information provided by the Subcommittee	e.	percooled Large Drop	Conditions. This tep	ort encompasses the	
information provided by the Subcommute					
17. Key Words		18. Distribution Statement			
Engine ising Engine ground engestion	. Sumanacalad langa	This desumant is a	weileble to the US	mublic through the	
drops	s; supercooled large	National Technical	Information Service	(NTIS) Springfield	
drops		Virginia 22161 This document is also available from the FAA			
		William J. Hughes T	echnical Center at actl	ibrary.tc.faa.gov.	
		-			
19. Security Classif. (of this report)	20. Security Classif. (of this p	age)	21. No. of Pages	22. Price	
Unclassified	Unclassified		13		

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

TABLE OF	CONTENTS
----------	----------

EXEC	CUTIVE SUMMARY	vi
1.	INTRODUCTION	1
	1.1 Background	1
2.	STUDY AND EVALUATION OF EVENTS IN DATABASE	1
3.	CONCLUSIONS AND RECOMMENDATIONS	3
4.	REFERENCES	4
APPE	ENDICES	

A-EIWG DATABASE AND WORKING GROUP PARTICIPANTS

LIST OF TABLES

Table		Page
1	Weather conditions during SLD events	2
2	Runway lengths and maximum taxi speeds and time	3
3	Summary of recommendations	4

LIST OF ACRONYMS

- BWI Baltimore International Airport (airport code)
- DEN Denver International Airport (airport code)
- EIWG
- LWC
- Engine Icing Working Group Liquid water content Oslo International Airport (airport code) OSL
- Supercooled Large Drop SLD

EXECUTIVE SUMMARY

In response to an FAA letter dated July 3, 2013 requesting information on engine ground icing, the Engine Icing Working Group (EIWG) formed a Subcommittee on Engine Ground Operations in Supercooled Large Drop (SLD) Conditions. This report encompasses the information provided by the Subcommittee.

Table 3 of 14 CFR 25.1093(b) at Amendment 25–140, and table 2 of 14 CFR 33.68 at Amendment 33–34 require that analysis, testing, or a combination of the two be used to show that the engine can operate acceptably in large drop glaze ice conditions (liquid water content of 0.3 g/m^3 and median volume diameter of 100 microns) for a minimum of 30 minutes on the ground. The EIWG Subcommittee evaluated the SLD field events in the EIWG event database and identified conditions to supplement those specified in the rule.

It was concluded that wind speed and aircraft taxi speeds could drive droplet impingement further into the inlet of the engines. The Subcommittee recommended wind speeds up to 15 knots and taxi speeds of 15 knots for business jet aircraft, and 10 knots for larger commercial aircraft

1. INTRODUCTION

1.1 BACKGROUND

In response to an FAA letter dated July 3, 2013, titled, "Request for Information of Advisory Group to Address Specific Engine and Installation Icing Issues," the Engine Icing Working Group (EIWG) formed a Subcommittee on Engine Ground Operations in Supercooled Large Drop (SLD) Conditions. The Subcommittee studied the issue of ground operations of turbine engines during SLD conditions. SLD field events were evaluated, and this report contains a summary of findings and recommendations.

2. STUDY AND EVALUATION OF EVENTS IN DATABASE

The FAA set engine-certification requirements for operation in SLD glaze icing conditions under Title 14, Code of Federal Regulations (14 CFR) 25.1093(b) at Amendment 25–140 and 14 CFR 33.68 at Amendment 33–34. The rule requires, among other requirements, that analysis, testing, or a combination of the two be used to show that the engine can operate acceptably in large drop glaze ice conditions for a minimum of 30 minutes on the ground. The liquid water content and median volume diameter are specified as 0.3 g/m^3 and 100 microns, respectively (table 1 of 14 CFR 25.1093(b) at Amendment 25–140 and table 2 of 14 CFR 33.68 at Amendment 33–34).

The EIWG Subcommittee on Engine Ground Operations in SLD Conditions evaluated SLD field events and identified appropriate conditions to supplement those specified in the rule. It was concluded that wind speed and aircraft taxi speeds could drive droplet impingement further into the inlet of the engine. The wind-speed recommendation is based on evaluation of weather data during the time of the events. Typical aircraft taxi speeds are based on airframe manufacturer (large and business jet) inputs from various flight operations sources and pilot accounts. The assumption of typical taxi speeds is reasonable because it is unsafe to taxi at maximum speed during slippery conditions. Aircraft taxi times were determined by applying recommended taxi speeds to the airport topography along with the assumption that half the maximum runway length could be taxied into the wind. It is assumed that aircraft take off into the wind; therefore, half of the runway can be taxied into the wind as a result.

The EIWG event database (see table A1 of appendix A) contains 5 event days between 1998 and 2004 in which the root cause of the event has been determined to be ground operation in SLD conditions. Table 4 of appendix A contains a longer evaluation period than the original Aviation Rulemaking Advisory Committee – Engine Harmonization Working Group (ARAC EHWG) [1] database and counts each affected aircraft as one event. The events occurred in Oslo (OSL), Denver (DEN), and Baltimore (BWI). There are 39 total events classified as engine damage, fan damage, and high vibration. The 39 events occurred during a time period in which the commercial fleet accrued approximately 243 million aircraft flight cycles (based on industry bird-ingestion databases). The event database does not designate the engine-mounting location. In some instances, there was no immediate operational impact, and the damage was discovered during an inspection after the event. One of the aircraft associated with the Baltimore event day returned to the airport shortly after takeoff (i.e., performed an air turn back). At least 23 of these events affected more than one engine. Consistent with the findings of AR-09-13-R1, no sustained power loss was reported for any of the events.

The temperature dew point and wind speed associated with the event days are summarized in table 1. All 5 event days occurred within the temperature range specified by the "large drop glaze ice condition" referenced in table 1 of 14 CFR 25.1093(b) at Amendment 25–140, and table 2 of 14 CFR 33.68 at Amendment 33–34 (-9 °C to -1 °C). Based on the results in table 1, a wind speed no greater than 15 knots is recommended for an analysis or test to demonstrate compliance to the large drop glaze icing regulatory requirements. Furthermore, it is recommended that wind gusts can be ignored because they were not present during the event days contained in the EIWG database.

Location	Events	Date	Time CET	AVG Temp [°C]	Max Temp [°C]	Min Temp [°C]	AVG Dew Point [°C]	Max Dew Point [°C]	Min Dew Point [°C]	Max Wind Speed [knots]	Max Wind Gusts [knots]
Oslo	16	12/14/1998	3:20PM - 5:20PM	-6.0	-5.0	-7.0	-7.0	-6.0	-7.0	2	0
Denver	14	10/31/2002	3:53PM - 9:53PM	-8.0	-8.0	-8.3	-9.0	-8.9	-9.4	9	0
Oslo	14	2/7/2003	4:50PM - 7:20PM	-7.0	-7.0	-7.0	-8.0	-8.0	-8.0	4	0
Denver	3	10/31/2003	10:26:00 PM	-3.0	-	-	-4.0	-	-	9	0
Baltimore	9	1/26/2004	10:31:00 AM	-7	-8.2	-6	-9	-7	-10.6	15	0

 Table 1. Weather conditions during SLD events

The runway details, taxi speeds, and taxi times for the three event locations are summarized in table 2. As noted above, the typical taxi speeds for ground operation in SLD conditions were determined from airframer recommendations based on various flight-operations sources and pilot accounts. Based on these accounts, the typical taxi speed in icing conditions is as follows: For business jet aircraft, taxi speeds are 15 knots, whereas larger commercial aircraft operate at a speed of 10 knots. The aircraft taxi times were computed by applying these taxi speeds to the airport topography along with the assumption that half the maximum runway length could be taxied into the wind.

The recommendation in this study is based on the runway lengths at the event locations because they are known to be climactically sensitive to freezing drizzle. Half of the longest runway length having an SLD event was taken as the recommended analysis distance. Both ACs 23-8C and 25-7C indicate that a 1-mile taxi test is acceptable to simulate normal operations. For the purpose of SLD analysis, a distance of 8000 ft, or 1.51 miles, is recommended by the working group.

Based on this analysis, the maximum taxi time into the wind is 6 minutes for business jets and 8 minutes for larger commercial aircraft (rounded up to the nearest minute).

Oslo							
			Bus Jet	Comm.	Bus Jet	Comm.	
	Leng	gth	Taxi	Taxi	Taxi	Taxi	
Direction	ft	m	[knots]	[knots]	[minutes]	[minutes]	
01L/19R	11,811	3,600	15	10	3.9	5.8	
01R/19L	9,678	2,950	15	10	3.2	4.8	
			Denv	er			
			Bus Jet	Comm.	Bus Jet	Comm.	
	Leng	gth	Taxi	Taxi	Taxi	Taxi	
Direction	ft	m	[knots]	[knots]	[minutes]	[minutes]	
7/25	12,000	3,658	15	10	3.9	5.9	
8/26	12,000	3,658	15	10	3.9	5.9	
16L/34R	12,000	3,658	15	10	3.9	5.9	
16R/34L	16,000	4,877	15	10	5.3	7.9	
17L/35R	12,000	3,658	15	10	3.9	5.9	
17R/35L	12,000	3,658	15	10	3.9	5.9	
			Baltim	ore			
			Bus Jet	Comm.	Bus Jet	Comm.	
	Leng	gth	Taxi	Taxi	Taxi	Taxi	
Direction	ft	m	[knots]	[knots]	[minutes]	[minutes]	
10/28	10,502	3,201	15	10	3.5	5.2	
15L/33R	5,000	1,524	15	10	1.6	2.5	
15R/33L	9,500	2,896	15	10	3.1	4.7	

Table 2. Runway lengths and maximum taxi speeds and time

3. CONCLUSIONS AND RECOMMENDATIONS

This task group determined recommendations pertaining to the large drop glaze ice condition specified in table 3 of 14 CFR 25.1093(b) at Amendment 25–140, and table 2 of 14 CFR 33.68 at Amendment 33–34. Because wind speed and aircraft taxi speeds could drive droplet impingement further into the inlet of the engine, a range of wind speeds up to 15 knots is recommended for analysis or test. However, it is recommended that wind gusts not be taken into account because they were not reported for the events contained in the EIWG database. Finally, the typical taxi speeds and maximum taxi times into the wind are summarized in table 3 for both business jets and commercial airliners.

	Wind Speed	Taxi Speed	Taxi Time
	[knots]	[knots]	[minutes]
Business jet	up to 15	15	6
Commercial airliner	up to 15	10	8

Table 3. Summary of recommendations

4. REFERENCES

1. FAA Report. (2014). Technical Compendium from Meetings of the Engine Harmonization Working Group. (DOT/FAA/AR-09/13,R1).

APPENDIX A—EIWG DATABASE AND WORKING GROUP PARTICIPANTS

Date	Number of Engines Affected	Affected Engine Positions	Location (Airport Code)	Event Symptoms/ Consequence	Mission Phase	Engine Power Level	When Damage Detected	Sustained Thrust Loss?
12/14/1998	2	1	OSL	FD	то	Н	Inspection	N
12/14/1998	2	2	OSL	FD	то	Н	Inspection	N
11/1/2002	1	2	DEN	FD	Т	GI	Inspection	Ν
11/1/2002	1	2	DEN	FD	Т	GI	Inspection	N
11/1/2002	1	2	DEN	FD	Т	GI	Inspection	N
11/1/2002	1	2	DEN	FD	Т	GI	Inspection	N
11/1/2002	1	2	DEN	FD	Т	GI	Inspection	N
11/1/2002	1	2	DEN	FD	Т	GI	Inspection	N
11/1/2002	1	2	DEN	FD	Т	GI	Inspection	N
11/1/2002	1	2	DEN	FD	Т	GI	Inspection	N
11/1/2002	1	2	DEN	FD	Т	GI	Inspection	N
11/1/2002	1	2	DEN	FD	Т	GI	Inspection	N
11/1/2002	1	2	DEN	FD	Т	GI	Inspection	N
11/1/2002	1	2	DEN	FD	Т	GI	Inspection	N
11/1/2002	1	2	DEN	FD	Т	GI	Inspection	N
11/1/2002	1	2	DEN	FD	Т	GI	Inspection	N
2/7/2003	2	1	OSL	FD, VB	Т	GI	Flight	N
2/7/2003	2	2	OSL	FD, VB	Т	GI	Flight	N
2/7/2003	2	2	OSL	FD, VB	Т	GI	Flight	N
2/7/2003	2	2	OSL	FD, VB	Т	GI	Flight	N
2/7/2003	2	1	OSL	FD, VB	Т	GI	Flight	N
2/7/2003	2	2	OSL	FD, VB	Т	GI	Flight	N
2/7/2003	2	1	OSL	FD, VB	Т	GI	Flight	N
2/7/2003	2	1	OSL	FD, VB	Т	GI	Flight	N
2/7/2003	2	1	OSL	FD, VB	т	GI	Flight	N
2/7/2003	2	2	OSL	FD, VB	Т	GI	Flight	N
2/7/2003	2	1	OSL	FD, VB	Т	GI	Flight	N
2/7/2003	2	2	OSL	FD, VB	т	GI	Flight	N
10/31/2003	?	?	DEN	-	-	-	Inspection	-
10/31/2003	?	?	DEN	-	-	-	Inspection	-
10/31/2003	?	?	DEN	-	-	-	Inspection	-
1/26/2004	2	1	BW/I		_	_	Flight - air turn	_
1/26/2004	2	2	BWI	-	-	-	Flight - air turn back	-
1/26/2004	2	1	BWI	_	_	_	Inspection	_
1/26/2004	2	2	BWI	_	_	_	Inspection	_
1/26/2004	2	1	BWI	_	_	_	Inspection	_
1/26/2004	2	2	BWI	_	_	_	Inspection	_
1/26/2004	2	2	BWI	_	-	-	Inspection	-
1/26/2004	2	2	BWI	_	_	_	Inspection	_
1/20/2004			2771					
mm/dd/yy	Total: 39			FD=fan damage VB=vibration	T=taxi TO = Takeoff	GI = ground idle H=high power		Y - yes N - no

Table A-1. EIWG database for SLD events

Name	Email	Affiliation
Chairperson:		
Daniel Knezevici	daniel.knezevici@ge.com	General Electric
Industry Participants:		
Aaron Binns	ABinns@williams-int.com	Williams
Alice Calmels	alice.GRANDIN@airbus.com	Airbus
Alun Williams	Alun.A.Williams@airbus.com	Airbus
Chuck Califf	chuck.califf@ge.com	General Electric
Dave Dischinger	dave.dischinger@honeywell.com	Honeywell
Eric Delmas	eric.delmas@airbus.com	Airbus
Geoff Jones	geoffrey.jones@rolls-royce.com	Rolls-Royce
Helene Mazet	helene.mazet@snecma.fr	SNECMA
Jeanne Mason	jeanne.g.mason@boeing.com	Boeing
Jon Gould	jonathan.gould@pw.utc.com	Pratt & Whitney
Les McVey	leslie.mcvey@ge.com	General Electric
Melissa Bravin	melissa.m.bravin@boeing.com	Boeing
Phil Dang	Phil.Dang@Honeywell.com	Honeywell
Raymond Best	RBest2@txtav.com	Textron Aviation
Shengfang Liao	shengfang.liao@pw.utc.com	Pratt & Whitney
Tom Dwier	tdwier@txtav.com	Textron Aviation
Certification Authority Participants:		
Angus Abrams	angus.abrams@easa.europa.eu	EASA
Doug Bryant	douglas.n.bryant@faa.gov	FAA
Chris Baczynski	chris.baczynski@tc.gc.ca	Transport Canada
John Fisher	john.fisher@faa.gov	FAA
Tom Bond	tom.bond@faa.gov	FAA

Table A-2. Task group participants